- Wellington Road Tipton DY4 8RS West Midlands United Kingdom
어떻게Databricks인증Databricks-Generative-AI-Engineer-Associate시험을 패스하느냐 에는 여러 가지 방법이 있습니다. 하지만 여러분의 선택에 따라 보장도 또한 틀립니다. 우리ITDumpsKR 에서는 아주 완벽한 학습가이드를 제공하며,Databricks인증Databricks-Generative-AI-Engineer-Associate시험은 아주 간편하게 패스하실 수 있습니다. ITDumpsKR에서 제공되는 문제와 답은 모두 실제Databricks인증Databricks-Generative-AI-Engineer-Associate시험에서나 오는 문제들입니다. 일종의 기출문제입니다.때문에 우리ITDumpsKR덤프의 보장 도와 정확도는 안심하셔도 좋습니다.무조건Databricks인증Databricks-Generative-AI-Engineer-Associate시험을 통과하게 만듭니다.우리ITDumpsKR또한 끈임 없는 덤프갱신으로 페펙트한Databricks인증Databricks-Generative-AI-Engineer-Associate시험자료를 여러분들한테 선사하겠습니다.
Databricks인증 Databricks-Generative-AI-Engineer-Associate시험을 등록하였는데 시험준비를 어떻게 해애 될지 몰라 고민중이시라면 이 글을 보고ITDumpsKR를 찾아주세요. ITDumpsKR의Databricks인증 Databricks-Generative-AI-Engineer-Associate덤프샘플을 체험해보시면 시험에 대한 두려움이 사라질것입니다. ITDumpsKR의Databricks인증 Databricks-Generative-AI-Engineer-Associate덤프는Databricks인증 Databricks-Generative-AI-Engineer-Associate실제시험문제를 마스터한 기초에서 제작한 최신시험에 대비한 공부자료로서 시험패스율이 100%입니다. 하루 빨리 덤프를 마련하여 시험을 준비하시면 자격증 취득이 빨라집니다.
>> Databricks-Generative-AI-Engineer-Associate인증 시험덤프 <<
ITDumpsKR는 모든 IT관련 인증시험자료를 제공할 수 있는 사이트입니다. 우리ITDumpsKR는 여러분들한테 최고 최신의 자료를 제공합니다. ITDumpsKR을 선택함으로 여러분은 이미Databricks Databricks-Generative-AI-Engineer-Associate시험을 패스하였습니다. 우리 자료로 여러분은 충분히Databricks Databricks-Generative-AI-Engineer-Associate를 패스할 수 있습니다. 만약 시험에서 떨어지셨다면 우리는 백프로 환불은 약속합니다. 그리고 갱신이 된 최신자료를 보내드립니다. 하지만 이런사례는 거이 없었습니다.모두 한번에 패스하였기 때문이죠. ITDumpsKR는 여러분이Databricks Databricks-Generative-AI-Engineer-Associate인증시험 패스와 추후사업에 모두 도움이 되겠습니다. Pass4Tes의 선택이야말로 여러분의 현명한 선택이라고 볼수 있습니다. Pass4Tes선택으로 여러분은 시간도 절약하고 돈도 절약하는 일석이조의 득을 얻을수 있습니다. 또한 구매후 일년무료 업데이트버전을 바을수 있는 기회를 얻을수 있습니다.
질문 # 21
A Generative AI Engineer has a provisioned throughput model serving endpoint as part of a RAG application and would like to monitor the serving endpoint's incoming requests and outgoing responses. The current approach is to include a micro-service in between the endpoint and the user interface to write logs to a remote server.
Which Databricks feature should they use instead which will perform the same task?
정답:A
설명:
Problem Context: The goal is to monitor theserving endpointfor incoming requests and outgoing responses in aprovisioned throughput model serving endpointwithin aRetrieval-Augmented Generation (RAG) application. The current approach involves using a microservice to log requests and responses to a remote server, but the Generative AI Engineer is looking for a more streamlined solution within Databricks.
Explanation of Options:
* Option A: Vector Search: This feature is used to perform similarity searches within vector databases.
It doesn't provide functionality for logging or monitoring requests and responses in a serving endpoint, so it's not applicable here.
* Option B: Lakeview: Lakeview is not a feature relevant to monitoring or logging request-response cycles for serving endpoints. It might be more related to viewing data in Databricks Lakehouse but doesn't fulfill the specific monitoring requirement.
* Option C: DBSQL: Databricks SQL (DBSQL) is used for running SQL queries on data stored in Databricks, primarily for analytics purposes. It doesn't provide the direct functionality needed to monitor requests and responses in real-time for an inference endpoint.
* Option D: Inference Tables: This is the correct answer.Inference Tablesin Databricks are designed to store the results and metadata of inference runs. This allows the system to logincoming requests and outgoing responsesdirectly within Databricks, making it an ideal choice for monitoring the behavior of a provisioned serving endpoint. Inference Tables can be queried and analyzed, enabling easier monitoring and debugging compared to a custom microservice.
Thus,Inference Tablesare the optimal feature for monitoring request and response logs within the Databricks infrastructure for a model serving endpoint.
질문 # 22
A Generative AI Engineer is tasked with deploying an application that takes advantage of a custom MLflow Pyfunc model to return some interim results.
How should they configure the endpoint to pass the secrets and credentials?
정답:C
설명:
Context: Deploying an application that uses an MLflow Pyfunc model involves managing sensitive information such as secrets and credentials securely.
Explanation of Options:
* Option A: Use spark.conf.set(): While this method can pass configurations within Spark jobs, using it for secrets is not recommended because it may expose them in logs or Spark UI.
* Option B: Pass variables using the Databricks Feature Store API: The Feature Store API is designed for managing features for machine learning, not for handling secrets or credentials.
* Option C: Add credentials using environment variables: This is a common practice for managing credentials in a secure manner, as environment variables can be accessed securely by applications without exposing them in the codebase.
* Option D: Pass the secrets in plain text: This is highly insecure and not recommended, as it exposes sensitive information directly in the code.
Therefore,Option Cis the best method for securely passing secrets and credentials to an application, protecting them from exposure.
질문 # 23
A Generative Al Engineer is tasked with developing a RAG application that will help a small internal group of experts at their company answer specific questions, augmented by an internal knowledge base. They want the best possible quality in the answers, and neither latency nor throughput is a huge concern given that the user group is small and they're willing to wait for the best answer. The topics are sensitive in nature and the data is highly confidential and so, due to regulatory requirements, none of the information is allowed to be transmitted to third parties.
Which model meets all the Generative Al Engineer's needs in this situation?
정답:C
설명:
Problem Context: The Generative AI Engineer needs a model for a Retrieval-Augmented Generation (RAG) application that provides high-quality answers, where latency and throughput are not major concerns. The key factors areconfidentialityandsensitivityof the data, as well as the requirement for all processing to be confined to internal resources without external data transmission.
Explanation of Options:
* Option A: Dolly 1.5B: This model does not typically support RAG applications as it's more focused on image generation tasks.
* Option B: OpenAI GPT-4: While GPT-4 is powerful for generating responses, its standard deployment involves cloud-based processing, which could violate the confidentiality requirements due to external data transmission.
* Option C: BGE-large: The BGE (Big Green Engine) large model is a suitable choice if it is configured to operate on-premises or within a secure internal environment that meets regulatory requirements.
Assuming this setup, BGE-large can provide high-quality answers while ensuring that data is not transmitted to third parties, thus aligning with the project's sensitivity and confidentiality needs.
* Option D: Llama2-70B: Similar to GPT-4, unless specifically set up for on-premises use, it generally relies on cloud-based services, which might risk confidential data exposure.
Given the sensitivity and confidentiality concerns,BGE-largeis assumed to be configurable for secure internal use, making it the optimal choice for this scenario.
질문 # 24
A Generative Al Engineer has successfully ingested unstructured documents and chunked them by document sections. They would like to store the chunks in a Vector Search index. The current format of the dataframe has two columns: (i) original document file name (ii) an array of text chunks for each document.
What is the most performant way to store this dataframe?
정답:C
설명:
* Problem Context: The engineer needs an efficient way to store chunks of unstructured documents to facilitate easy retrieval and search. The current dataframe consists of document filenames and associated text chunks.
* Explanation of Options:
* Option A: Splitting into train and test sets is more relevant for model training scenarios and not directly applicable to storage for retrieval in a Vector Search index.
* Option B: Flattening the dataframe such that each row contains a single chunk with a unique identifier is the most performant for storage and retrieval. This structure aligns well with how data is indexed and queried in vector search applications, making it easier to retrieve specific chunks efficiently.
* Option C: Creating a unique identifier for each document only does not address the need to access individual chunks efficiently, which is critical in a Vector Search application.
* Option D: Storing each chunk as an independent JSON file creates unnecessary overhead and complexity in managing and querying large volumes of files.
OptionBis the most efficient and practical approach, allowing for streamlined indexing and retrieval processes in a Delta table environment, fitting the requirements of a Vector Search index.
질문 # 25
A Generative AI Engineer is designing a chatbot for a gaming company that aims to engage users on its platform while its users play online video games.
Which metric would help them increase user engagement and retention for their platform?
정답:D
설명:
In the context of designing a chatbot to engage users on a gaming platform,diversity of responses(option B) is a key metric to increase user engagement and retention. Here's why:
* Diverse and Engaging Interactions:A chatbot that provides varied and interesting responses will keep users engaged, especially in an interactive environment like a gaming platform. Gamers typically enjoy dynamic and evolving conversations, anddiversity of responseshelps prevent monotony, encouraging users to interact more frequently with the bot.
* Increasing Retention:By offering different types of responses to similar queries, the chatbot can create a sense of novelty and excitement, which enhances the user's experience and makes them more likely to return to the platform.
* Why Other Options Are Less Effective:
* A (Randomness): Random responses can be confusing or irrelevant, leading to frustration and reducing engagement.
* C (Lack of Relevance): If responses are not relevant to the user's queries, this will degrade the user experience and lead to disengagement.
* D (Repetition of Responses): Repetitive responses can quickly bore users, making the chatbot feel uninteresting and reducing the likelihood of continued interaction.
Thus,diversity of responses(option B) is the most effective way to keep users engaged and retain them on the platform.
질문 # 26
......
많은 분들이 고난의도인 Databricks관련인증시험을 응시하고 싶어 하는데 이런 시험은 많은 전문적인 관련지식이 필요합니다. 시험은 당연히 완전히 전문적인 Databricks-Generative-AI-Engineer-Associate관련지식을 터득하자만이 패스할 가능성이 높습니다. 하지만 지금은 많은 방법들로 여러분의 부족한 면을 보충해드릴 수 있으며 또 힘든 Databricks시험도 패스하실 수 있습니다. 혹은 여러분은 전문적인 Databricks Certified Generative AI Engineer Associate관련지식을 터득하자들보다 더 간단히 더 빨리 시험을 패스하실 수 있습니다.
Databricks-Generative-AI-Engineer-Associate최신 업데이트버전 공부문제: https://www.itdumpskr.com/Databricks-Generative-AI-Engineer-Associate-exam.html
Databricks-Generative-AI-Engineer-Associate 덤프 최신기출문제를 기준으로 제작된 자료라 시험패스하는데 많은 도움이 되어드립니다, 가장 최근 출제된 Databricks-Generative-AI-Engineer-Associate 자격증취득 시험을 바탕으로 만들어진 적중율 최고인 덤프로서 간단한 시험패스는 더는 꿈이 아닙니다, Databricks-Generative-AI-Engineer-Associate덤프로 Databricks-Generative-AI-Engineer-Associate시험을 준비하시면 시험패스 난이도가 낮아지고 자격증 취득율 이 높이 올라갑니다.자격증을 많이 취득하여 취업이나 승진의 문을 두드려 보시면 빈틈없이 닫힌 문도 활짝 열릴것입니다, ITDumpsKR의Databricks인증 Databricks-Generative-AI-Engineer-Associate덤프는 고객님께서 Databricks인증 Databricks-Generative-AI-Engineer-Associate시험을 패스하는 필수품입니다, ITDumpsKR의 Databricks인증 Databricks-Generative-AI-Engineer-Associate덤프를 선택하여Databricks인증 Databricks-Generative-AI-Engineer-Associate시험공부를 하는건 제일 현명한 선택입니다.
아마 본인이 들었으면 엄청나게 상처받을 텐데, 브루스는 서재 쪽으로 걷다가, 기사의 시야에서 멀어지자 얼른 아래층으로 내려왔다, Databricks-Generative-AI-Engineer-Associate 덤프 최신기출문제를 기준으로 제작된 자료라 시험패스하는데 많은 도움이 되어드립니다.
가장 최근 출제된 Databricks-Generative-AI-Engineer-Associate 자격증취득 시험을 바탕으로 만들어진 적중율 최고인 덤프로서 간단한 시험패스는 더는 꿈이 아닙니다, Databricks-Generative-AI-Engineer-Associate덤프로 Databricks-Generative-AI-Engineer-Associate시험을 준비하시면 시험패스 난이도가 낮아지고 자격증 취득율Databricks-Generative-AI-Engineer-Associate이 높이 올라갑니다.자격증을 많이 취득하여 취업이나 승진의 문을 두드려 보시면 빈틈없이 닫힌 문도 활짝 열릴것입니다.
ITDumpsKR의Databricks인증 Databricks-Generative-AI-Engineer-Associate덤프는 고객님께서 Databricks인증 Databricks-Generative-AI-Engineer-Associate시험을 패스하는 필수품입니다, ITDumpsKR의 Databricks인증 Databricks-Generative-AI-Engineer-Associate덤프를 선택하여Databricks인증 Databricks-Generative-AI-Engineer-Associate시험공부를 하는건 제일 현명한 선택입니다.